

Documentation

dataflake.ldapconnection provides an abstraction layer on top
of pyldap. It offers a connection object with simplified
methods for inserting, modifying, searching and deleting records in the
LDAP directory tree. Failover/redundancy can be achieved by supplying
connection data for more than one LDAP server.

Narrative documentation

Narrative documentation explaining how to use dataflake.ldapconnection.

	Installation

	Using dataflake.ldapconnection
	API examples

	Handling string encoding for input and output values

	Development
	Getting the source code

	Bug tracker

	Running the tests in a virtualenv

	Running the tests using zc.buildout

	Building the documentation using zc.buildout

	Making a release

	Change log
	2.2 (unreleased)

	2.1 (2018-06-29)

	2.0 (2017-10-29)

	1.5 (2012-04-20)

	1.4 (2012-04-03)

	1.3 (2012-03-23)

	1.2 (2010-08-09)

	1.1 (2010-05-09)

	1.0 (2010-04-12)

	1.0b1 (2010-02-01)

	0.4 (2008-12-25)

	0.3 (2008-08-30)

	0.2 (2008-08-27)

	0.1 (2008-06-11)

API documentation

API documentation for dataflake.ldapconnection.

	Interfaces

	dataflake.ldapconnection.connection

Support

If you need commercial support for this software package, please
see https://www.zetwork.com [https://www.zetwork.com/].

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

Installation

You will need Python [http://python.org] version 2.7 or better to
run dataflake.ldapconnection.

It is advisable to install dataflake.ldapconnection into a
virtualenv in order to obtain isolation from any “system”
packages you’ve got installed in your Python version (and likewise,
to prevent dataflake.ldapconnection from globally installing
versions of packages that are not compatible with your system Python).

After you’ve got the requisite dependencies installed, you may install
dataflake.ldapconnection into your Python environment using the
following command:

$ easy_install dataflake.ldapconnection

or:

$ pip install dataflake.fakeldap

If you use zc.buildout you can add dataflake.fakeldap
to the necessary eggs section to have it pulled in automatically.

When you easy_install or pip dataflake.fakeldap, the
pyldap libraries are installed if they are not present.

Using dataflake.ldapconnection

dataflake.ldapconnection provides an abstraction layer on
top of pyldap. It offers a connection object with
simplified methods for inserting, modifying, searching and deleting
records in the LDAP directory tree. Failover/redundancy can be
achieved by supplying connection data for more than one LDAP server.

API examples

Instantiating a connection object:

	1
2
3

	 >>> from dataflake.ldapconnection.connection import LDAPConnection
 >>> conn = LDAPConnection()
 >>> conn.addServer('localhost', '1389', 'ldap')

To work with the connection object you need to make sure that a LDAP
server is available on the provided host and port.

Now we will search for a record that does not yet exist, then add
the missing record and find it when searching again:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
 {'exception': '', 'results': [], 'size': 0}
 >>> data = { 'objectClass': ['top', 'inetOrgPerson']
 ... , 'cn': 'testing'
 ... , 'sn': 'Lastname'
 ... , 'givenName': 'Firstname'
 ... , 'mail': 'test@test.com'
 ... , 'userPassword': '5ecret'
 ... }
 >>> conn.insert('ou=users,dc=localhost', 'cn=testing', attrs=data, bind_dn='cn=Manager,dc=localhost', bind_pwd='secret')
 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
 {'exception': '', 'results': [{'dn': 'cn=testing,ou=users,dc=localhost', 'cn': ['testing'], 'objectClass': ['top', 'inetOrgPerson'], 'userPassword': ['5ecret'], 'sn': ['Lastname'], 'mail': ['test@test.com'], 'givenName': ['Firstname']}], 'size': 1}

We can edit an existing record:

	1
2
3
4

	>>> changes = {'givenName': 'John', 'sn': 'Doe'}
>>> conn.modify('cn=testing,ou=users,dc=localhost', attrs=changes, bind_dn='cn=Manager,dc=localhost', bind_pwd='secret')
>>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
{'exception': '', 'results': [{'dn': 'cn=testing,ou=users,dc=localhost', 'cn': ['testing'], 'objectClass': ['top', 'inetOrgPerson'], 'userPassword': ['5ecret'], 'sn': ['Doe'], 'mail': ['test@test.com'], 'givenName': ['John']}], 'size': 1}

As the last step, we will delete our testing record:

	1
2
3

	>>> conn.delete('cn=testing,ou=users,dc=localhost', bind_dn='cn=Manager,dc=localhost', bind_pwd='secret')
>>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
{'exception': '', 'results': [], 'size': 0}

The Interfaces page contains more
information about the connection APIs.

Handling string encoding for input and output values

LDAP servers expect values sent to them in specific string encodings.
Standards-compliant LDAP servers use UTF-8. They use the same encoding
for values returned e.g. by a search. This server-side encoding may not
be convenient for communicating with the dataflake.ldapconnection
API itself. For this reason the server-side encoding and API encoding
can be set individually on connection instances using the attributes
ldap_encoding and api_encoding, respectively. The connection
instance handles all string encoding transparently.

By default, instances use UTF-8 as ldap_encoding and ISO-8859-1
(Latin-1) as api_encoding. You can assign any valid Python codec
name to these attributes. Assigning an empty value or None means that
unencoded unicode strings are used under Python 2.

Development

Getting the source code

The source code is maintained in the Dataflake Git
repository. To check out the trunk:

$ git clone https://github.com/dataflake/dataflake.ldapconnection.git

You can also browse the code online at
https://github.com/dataflake/dataflake.ldapconnection

Bug tracker

For bug reports, suggestions or questions please use the
GitHub issue tracker at
https://github.com/dataflake/dataflake.ldapconnection/issues.

Running the tests in a virtualenv

If you use the virtualenv package to create lightweight Python
development environments, you can run the tests using nothing more
than the python binary in a virtualenv. First, create a scratch
environment:

$ /path/to/virtualenv --no-site-packages /tmp/virtualpy

Next, get this package registered as a “development egg” in the
environment:

$ /tmp/virtualpy/bin/python setup.py develop

Finally, run the tests using the build-in setuptools testrunner:

$ /tmp/virtualpy/bin/python setup.py test
running test
...
test_escape_dn (dataflake.ldapconnection.tests.test_utils.UtilsTest) ... ok

--
Ran 88 tests in 0.058s

OK

If you have the nose package installed in the virtualenv, you can
use its testrunner too:

$ /tmp/virtualpy/bin/easy_install nose
...
$ /tmp/virtualpy/bin/python setup.py nosetests
running nosetests
..
...............................
--
Ran 101 tests in 0.162s

OK

or:

$ /tmp/virtualpy/bin/nosetests
..
...............................
--
Ran 101 tests in 0.160s

OK

If you have the coverage package installed in the virtualenv,
you can see how well the tests cover the code:

$ /tmp/virtualpy/bin/easy_install nose coverage
...
$ /tmp/virtualpy/bin/python setup.py nosetests \
 --with-coverage --cover-package=dataflake.ldapconnection
running nosetests
...

Name Stmts Exec Cover Missing

dataflake.ldapconnection 1 1 100%
dataflake.ldapconnection.connection 246 244 99% 214-215
dataflake.ldapconnection.interfaces 10 10 100%
dataflake.ldapconnection.utils 7 7 100%

TOTAL 264 262 99%
--
Ran 101 tests in 0.226s

OK

Running the tests using zc.buildout

dataflake.ldapconnection ships with its own buildout.cfg file and
bootstrap.py for setting up a development buildout:

$ python bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
...

Once you have a buildout, the tests can be run as follows:

$ bin/test --all
Running tests at all levels
Running zope.testing.testrunner.layer.UnitTests tests:
 Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
 Running:
...
.........................
 Ran 94 tests with 0 failures and 0 errors in 0.042 seconds.
Tearing down left over layers:
 Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

Building the documentation using zc.buildout

The dataflake.ldapconnection buildout installs the Sphinx
scripts required to build the documentation, including testing
its code snippets:

$ cd docs
$ make doctest
Running Sphinx v1.6.5
...
running tests...

Doctest summary
===============
 0 tests
 0 failures in tests
 0 failures in setup code
build succeeded.
Testing of doctests sn the sources finished, look at the results in \
 .../docs/_build/doctest/output.txt.

Making a release

These instructions assume that you have a development sandbox set
up using zc.buildout as the scripts used here are generated
by the buildout.

$ bin/buildout -o
$ python setup.py sdist bdist_wheel upload --sign

The bin/buildout step will make sure the correct package information
is used.

Change log

2.2 (unreleased)

2.1 (2018-06-29)

	test and declare support for Python 3.7

2.0 (2017-10-29)

	Python 3 compatibility

	Move from python-ldap to pyldap for Python 3 compatibility

	PEP 8 code cleanup

	added Travis CI automatic testing configuration

	use pkgutil-style namespace declaration

	package cleanup (.gitignore, MANIFEST.in, README.rst)

	docs cleanup (Makefile, conf.py)

	tests cleanup (tox.ini, .travis.yml)

	remove unsupported documentation bits

	fix coverage tests to only test this package

	remove coveralls from the Travis CI configuration

	make the character sets used for communicating with the LDAP libraries
(ldap_encoding) and the calling side (api_encoding)
configurable in the LDAPConnection constructor.

1.5 (2012-04-20)

	Factored the dataflake.ldapconnection.tests.fakeldap module
into a separate package dataflake.fakeldap

	Restricted the supported Python versions to 2.6 and 2.7.

	removed old test_suite fossils

1.4 (2012-04-03)

	Added a simple tox configuration to quickly test with different
Python versions. As a result of successful testing, re-declare
compatibility with Python 2.4 and 2.5.

	Moved the documentation build dependencies into a setup extra so
building them without buildout becomes easier.

	Added setup.py aliases for creating a testing sandbox and the
documentation dependencies, and use them in the buildout
configuration.

	Extended fakeldap.RaisingFakeLDAPConnection to accept a list
of exceptions to raise. On each call to the method that is set
to raise the exception, the first item in the exception list
is removed and raised. This allows testing code areas nested in
more than one try/except clause.

1.3 (2012-03-23)

	Update bootstrap.py to what ships with zc.buildout 1.5.2

	fakeldap: Add email characters and some non-ASCII characters to
FLTR_RE, to be able to use them in searches. (Stefan Holek)

	fakeldap: Add unbind_s API. (Stefan Holek)

	fakeldap: Deep-copy entries before returning them. (Stefan Holek)

	fakeldap: Only return requested attributes. (Stefan Holek)

	fakeldap: Optionally disable password hashing. (Stefan Holek)

	fakeldap: Optionally maintain the ‘memberOf’ attribute of group
members. (Stefan Holek)

	connection: Clean up encoding and decoding of values for when the
api_encoding is set to None. (Stefan Holek)

	connection: New ‘raw’ kwarg for the search API. If true, search
results are returned in the ldap_encoding. (Stefan Holek)

	connection: Store a connection’s bind_dn and bind_pwd as is, and
encode them before use. (Stefan Holek)

	connection: Fix a condition that caused rebinding to fail if only
one of bind_dn and bind_pwd had changed. (Stefan Holek)

	connection: Add disconnect API. (Stefan Holek)

	connection: Allow to delete subsets from multi-valued attributes.
(Stefan Holek)

	switched documentation to point to the new Git repository

1.2 (2010-08-09)

	Using id() is not random enough for a unique hash.

1.1 (2010-05-09)

	Updated Sphinx Makefile and configuration to be closer
to the latest Sphinx version

	Greatly expand installation and testing documentation using
ideas from Tres Seaver

1.0 (2010-04-12)

	Bug: fakeldap.FakeLDAPConnection wildcard searches did not
work correctly and returned too many matches.

	Bug: Improve behavior matching of standard python-ldap and
fakeldap by raising ldap.NO_SUCH_OBJECT where operations
target non-existing entries.

	Bug: Improve behavior matching of standard python-ldap and
fakeldap by raising ldap.ALREADY_EXISTS where operations
duplicate existing entries.

	Bug: Added tests for all fakeldap.FakeLDAPConnection methods
and added tests for some other module classes and functions.

	Refactoring: Removed the fakeldap.initialize and explode_dn
functions. They were either not needed or needlessly
duplicating existing python-ldap features.

	Bug: python-ldap will no longer support the LDAP connection
class ldap.ldapobject.SmartLDAPObject with version 2.3.11.
Replacing it with ReconnectLDAPObject.

	Bug: If a connection raised an LDAP exception inside
start_tls_s handling was broken.

	Feature: You can now add server definitions for servers that
support the StartTLS extended operation. Whereas the existing
secure connections using the ldaps protocol are encrypted
throughout, StartTLS is used through an unencrypted connection
to request all further traffic to be encrypted.

	Refactoring: Switch tests to using the fakeldap LDAP connection
object wherever possible, and correct a few fakeldap and
LDAPConnection misbehaviors along the way.

1.0b1 (2010-02-01)

	Performing more rigorous input checking for DNs

	Made encoding/decoding more flexible by adding configuration
flags for the encoding used by the LDAP server and the
encoding for calls to and return values from the connection API.
The default is backwards compatible (UTF-8 for the LDAP server
encoding, and Latin-15 for the API encoding).

	Factored the connection tests module into a series of modules,
it was getting large and unwieldy.

	move the actual python-ldap connection from an attribute into
a module-level cache since those connections cannot be
pickled.

	Removed the rdn_attr attribute, which was used to try and
determine if a modify operation should trigger a modrdn. We
now fish the RDN attribute from the record’s DN for this
purpose.

	Changed the way internal logging is done to avoid storing logger
objects onto the connection instance unless it is explicitly
specified. This means the instance is picklable when using the
default logging.

	Removed the bind method. There was no good reason to expose it
as part of the public API, and since bind operations are
re-done as part of all operations it would only serve to
confuse users.
Users who want to use credentials other than the credentials
configured into the connection instance should pass them along
explicitly when invoking the operation.

	The search method now provides a default search subtree search
scope if none is specified.

	Creating a new instance does not require passing server data like
host, port and protocol anymore.

	replaced several methods with better alternatives from python-ldap,
which also requires upping the dependency to python-ldap>=2.3.0,
and fixing up the tests.

	pare down fakeldap to not try and provide all kinds of constants
from python-ldap, but just a LDAP connection class.

	add a new method “bind” to rebind a connection, if the last bind
differs from the desired bind.

	rename variable name “filter” with “fltr” to stop shadowing the
Python function “filter”.

	added an interfaces file as documentation and “contract”. This adds
a dependency on zope.interface.

	removed unused argument “login_attr” from constructor argument list

	LDAPConnection objects now accept more than a single server definition.
Failover between connections is triggered by connection or operation
timeouts. Added API to add and remove server definitions at runtime.

	all those methods causing LDAP operations to be performed accept
optional bind_dn and bind_pwd named arguments to rebind with the
provided credentials instead of those credentials stored in the
LDAPConnection instance. This represents an API change for the
insert, modify and delete methods.

0.4 (2008-12-25)

	fakeldap bug: the modify_s method would expect changes of type MOD_DELETE
to come with a list of specific attribute values to delete. Now the
attribute will be deleted as a whole if the expected list is None, this
reflects actual python-ldap behavior better.

	now we are exercising the fakeldap doctests from within this package,
they used to be run from Products.LDAPUserFolder, which was not cleaned
up when the fakeldap module moved to dataflake.ldapconnection.

0.3 (2008-08-30)

	fakeldap: no longer override the LDAP exceptions, just get them from
python-ldap.
(http://www.dataflake.org/tracker/issue_00620)

0.2 (2008-08-27)

	backport a fix applied to the LDAPUserFolder FakeLDAP module to handle
BASE-scoped searches on a DN.

0.1 (2008-06-11)

	Initial release.

Interfaces

Note

On
ReadTheDocs [http://http://dataflakeldapconnection.readthedocs.io]
this page will not work correctly.

dataflake.ldapconnection.connection

Note

On
ReadTheDocs [http://http://dataflakeldapconnection.readthedocs.io]
this page will not work correctly.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dataflake	

 	
 	
 dataflake.ldapconnection.connection	

Index

 D
 | I
 | P
 | S
 | V
 | Z

D

 	
 	dataflake.ldapconnection.connection (module)

I

 	
 	Interface

P

 	
 	pyldap

S

 	
 	Setuptools

V

 	
 	Virtualenv

Z

 	
 	Zope

Glossary

	Setuptools

	Setuptools [http://peak.telecommunity.com/DevCenter/setuptools]
builds on Python’s distutils to provide easier building,
distribution, and installation of packages.

	Interface

	An attribute of a model object that determines its type. It is an
instance of a zope.interface Interface class.

	Zope

	The Z Object Publishing Framework [http://zope.org]. The granddaddy
of Python web frameworks.

	Virtualenv

	An isolated Python environment. Allows you to control which
packages are used on a particular project by cloning your main
Python. virtualenv [http://pypi.python.org/pypi/virtualenv]
was created by Ian Bicking.

	pyldap

	The pyldap [https://github.com/pyldap/pyldap/] library is
used to communicate with LDAP servers.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Installation

 		
 Using dataflake.ldapconnection

 		
 API examples

 		
 Handling string encoding for input and output values

 		
 Development

 		
 Getting the source code

 		
 Bug tracker

 		
 Running the tests in a virtualenv

 		
 Running the tests using zc.buildout

 		
 Building the documentation using zc.buildout

 		
 Making a release

 		
 Change log

 		
 2.2 (unreleased)

 		
 2.1 (2018-06-29)

 		
 2.0 (2017-10-29)

 		
 1.5 (2012-04-20)

 		
 1.4 (2012-04-03)

 		
 1.3 (2012-03-23)

 		
 1.2 (2010-08-09)

 		
 1.1 (2010-05-09)

 		
 1.0 (2010-04-12)

 		
 1.0b1 (2010-02-01)

 		
 0.4 (2008-12-25)

 		
 0.3 (2008-08-30)

 		
 0.2 (2008-08-27)

 		
 0.1 (2008-06-11)

 		
 Interfaces

 		
 dataflake.ldapconnection.connection

_static/up.png

_static/up-pressed.png

