
dataflake.ldapconnection
Documentation

Release 2.1

Jens Vagelpohl

Jun 29, 2018

Contents

1 Narrative documentation 3
1.1 Installation . 3
1.2 Using dataflake.ldapconnection . 3
1.3 Development . 5
1.4 Change log . 7

2 API documentation 13
2.1 Interfaces . 13
2.2 dataflake.ldapconnection.connection . 13

3 Support 15

4 Indices and tables 17

Python Module Index 19

i

ii

dataflake.ldapconnection Documentation, Release 2.1

dataflake.ldapconnection provides an abstraction layer on top of pyldap. It offers a connection ob-
ject with simplified methods for inserting, modifying, searching and deleting records in the LDAP directory tree.
Failover/redundancy can be achieved by supplying connection data for more than one LDAP server.

Contents 1

dataflake.ldapconnection Documentation, Release 2.1

2 Contents

CHAPTER 1

Narrative documentation

Narrative documentation explaining how to use dataflake.ldapconnection.

1.1 Installation

You will need Python version 2.7 or better to run dataflake.ldapconnection.

It is advisable to install dataflake.ldapconnection into a virtualenv in order to obtain isolation from
any “system” packages you’ve got installed in your Python version (and likewise, to prevent dataflake.
ldapconnection from globally installing versions of packages that are not compatible with your system Python).

After you’ve got the requisite dependencies installed, you may install dataflake.ldapconnection into your
Python environment using the following command:

$ easy_install dataflake.ldapconnection

or:

$ pip install dataflake.fakeldap

If you use zc.buildout you can add dataflake.fakeldap to the necessary eggs section to have it pulled in
automatically.

When you easy_install or pip dataflake.fakeldap, the pyldap libraries are installed if they are not
present.

1.2 Using dataflake.ldapconnection

dataflake.ldapconnection provides an abstraction layer on top of pyldap. It offers a connection ob-
ject with simplified methods for inserting, modifying, searching and deleting records in the LDAP directory tree.
Failover/redundancy can be achieved by supplying connection data for more than one LDAP server.

3

http://python.org

dataflake.ldapconnection Documentation, Release 2.1

1.2.1 API examples

Instantiating a connection object:

1 >>> from dataflake.ldapconnection.connection import LDAPConnection
2 >>> conn = LDAPConnection()
3 >>> conn.addServer('localhost', '1389', 'ldap')

To work with the connection object you need to make sure that a LDAP server is available on the provided host and
port.

Now we will search for a record that does not yet exist, then add the missing record and find it when searching again:

1 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
2 {'exception': '', 'results': [], 'size': 0}
3 >>> data = { 'objectClass': ['top', 'inetOrgPerson']
4 ... , 'cn': 'testing'
5 ... , 'sn': 'Lastname'
6 ... , 'givenName': 'Firstname'
7 ... , 'mail': 'test@test.com'
8 ... , 'userPassword': '5ecret'
9 ... }

10 >>> conn.insert('ou=users,dc=localhost', 'cn=testing', attrs=data, bind_dn=
→˓'cn=Manager,dc=localhost', bind_pwd='secret')

11 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
12 {'exception': '', 'results': [{'dn': 'cn=testing,ou=users,dc=localhost', 'cn': [

→˓'testing'], 'objectClass': ['top', 'inetOrgPerson'], 'userPassword': ['5ecret'], 'sn
→˓': ['Lastname'], 'mail': ['test@test.com'], 'givenName': ['Firstname']}], 'size': 1}

We can edit an existing record:

1 >>> changes = {'givenName': 'John', 'sn': 'Doe'}
2 >>> conn.modify('cn=testing,ou=users,dc=localhost', attrs=changes, bind_dn=

→˓'cn=Manager,dc=localhost', bind_pwd='secret')
3 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
4 {'exception': '', 'results': [{'dn': 'cn=testing,ou=users,dc=localhost', 'cn': [

→˓'testing'], 'objectClass': ['top', 'inetOrgPerson'], 'userPassword': ['5ecret'], 'sn
→˓': ['Doe'], 'mail': ['test@test.com'], 'givenName': ['John']}], 'size': 1}

As the last step, we will delete our testing record:

1 >>> conn.delete('cn=testing,ou=users,dc=localhost', bind_dn='cn=Manager,dc=localhost',
→˓ bind_pwd='secret')

2 >>> conn.search('ou=users,dc=localhost', fltr='(cn=testing)')
3 {'exception': '', 'results': [], 'size': 0}

The Interfaces page contains more information about the connection APIs.

1.2.2 Handling string encoding for input and output values

LDAP servers expect values sent to them in specific string encodings. Standards-compliant LDAP servers use UTF-8.
They use the same encoding for values returned e.g. by a search. This server-side encoding may not be convenient
for communicating with the dataflake.ldapconnection API itself. For this reason the server-side encod-
ing and API encoding can be set individually on connection instances using the attributes ldap_encoding and
api_encoding, respectively. The connection instance handles all string encoding transparently.

4 Chapter 1. Narrative documentation

dataflake.ldapconnection Documentation, Release 2.1

By default, instances use UTF-8 as ldap_encoding and ISO-8859-1 (Latin-1) as api_encoding. You can
assign any valid Python codec name to these attributes. Assigning an empty value or None means that unencoded
unicode strings are used under Python 2.

1.3 Development

1.3.1 Getting the source code

The source code is maintained in the Dataflake Git repository. To check out the trunk:

$ git clone https://github.com/dataflake/dataflake.ldapconnection.git

You can also browse the code online at https://github.com/dataflake/dataflake.ldapconnection

1.3.2 Bug tracker

For bug reports, suggestions or questions please use the GitHub issue tracker at https://github.com/dataflake/dataflake.
ldapconnection/issues.

1.3.3 Running the tests in a virtualenv

If you use the virtualenv package to create lightweight Python development environments, you can run the tests
using nothing more than the python binary in a virtualenv. First, create a scratch environment:

$ /path/to/virtualenv --no-site-packages /tmp/virtualpy

Next, get this package registered as a “development egg” in the environment:

$ /tmp/virtualpy/bin/python setup.py develop

Finally, run the tests using the build-in setuptools testrunner:

$ /tmp/virtualpy/bin/python setup.py test
running test
...
test_escape_dn (dataflake.ldapconnection.tests.test_utils.UtilsTest) ... ok

--
Ran 88 tests in 0.058s

OK

If you have the nose package installed in the virtualenv, you can use its testrunner too:

$ /tmp/virtualpy/bin/easy_install nose
...
$ /tmp/virtualpy/bin/python setup.py nosetests
running nosetests
..
...............................
--
Ran 101 tests in 0.162s

(continues on next page)

1.3. Development 5

https://github.com/dataflake/dataflake.ldapconnection
https://github.com/dataflake/dataflake.ldapconnection/issues
https://github.com/dataflake/dataflake.ldapconnection/issues

dataflake.ldapconnection Documentation, Release 2.1

(continued from previous page)

OK

or:

$ /tmp/virtualpy/bin/nosetests
..
...............................
--
Ran 101 tests in 0.160s

OK

If you have the coverage package installed in the virtualenv, you can see how well the tests cover the code:

$ /tmp/virtualpy/bin/easy_install nose coverage
...
$ /tmp/virtualpy/bin/python setup.py nosetests \

--with-coverage --cover-package=dataflake.ldapconnection
running nosetests
...

Name Stmts Exec Cover Missing

dataflake.ldapconnection 1 1 100%
dataflake.ldapconnection.connection 246 244 99% 214-215
dataflake.ldapconnection.interfaces 10 10 100%
dataflake.ldapconnection.utils 7 7 100%

TOTAL 264 262 99%
--
Ran 101 tests in 0.226s

OK

1.3.4 Running the tests using zc.buildout

dataflake.ldapconnection ships with its own buildout.cfg file and bootstrap.py for setting up a
development buildout:

$ python bootstrap.py
...
Generated script '.../bin/buildout'
$ bin/buildout
...

Once you have a buildout, the tests can be run as follows:

$ bin/test --all
Running tests at all levels
Running zope.testing.testrunner.layer.UnitTests tests:

Set up zope.testing.testrunner.layer.UnitTests in 0.000 seconds.
Running:

...

.........................

(continues on next page)

6 Chapter 1. Narrative documentation

dataflake.ldapconnection Documentation, Release 2.1

(continued from previous page)

Ran 94 tests with 0 failures and 0 errors in 0.042 seconds.
Tearing down left over layers:

Tear down zope.testing.testrunner.layer.UnitTests in 0.000 seconds.

1.3.5 Building the documentation using zc.buildout

The dataflake.ldapconnection buildout installs the Sphinx scripts required to build the documentation, in-
cluding testing its code snippets:

$ cd docs
$ make doctest
Running Sphinx v1.6.5
...
running tests...

Doctest summary
===============

0 tests
0 failures in tests
0 failures in setup code

build succeeded.
Testing of doctests sn the sources finished, look at the results in \

.../docs/_build/doctest/output.txt.

1.3.6 Making a release

These instructions assume that you have a development sandbox set up using zc.buildout as the scripts used here
are generated by the buildout.

$ bin/buildout -o
$ python setup.py sdist bdist_wheel upload --sign

The bin/buildout step will make sure the correct package information is used.

1.4 Change log

1.4.1 2.1 (2018-06-29)

• test and declare support for Python 3.7

1.4.2 2.0 (2017-10-29)

• Python 3 compatibility

• Move from python-ldap to pyldap for Python 3 compatibility

• PEP 8 code cleanup

• added Travis CI automatic testing configuration

• use pkgutil-style namespace declaration

1.4. Change log 7

dataflake.ldapconnection Documentation, Release 2.1

• package cleanup (.gitignore, MANIFEST.in, README.rst)

• docs cleanup (Makefile, conf.py)

• tests cleanup (tox.ini, .travis.yml)

• remove unsupported documentation bits

• fix coverage tests to only test this package

• remove coveralls from the Travis CI configuration

• make the character sets used for communicating with the LDAP libraries (ldap_encoding) and the calling
side (api_encoding) configurable in the LDAPConnection constructor.

1.4.3 1.5 (2012-04-20)

• Factored the dataflake.ldapconnection.tests.fakeldap module into a separate package
dataflake.fakeldap

• Restricted the supported Python versions to 2.6 and 2.7.

• removed old test_suite fossils

1.4.4 1.4 (2012-04-03)

• Added a simple tox configuration to quickly test with different Python versions. As a result of successful testing,
re-declare compatibility with Python 2.4 and 2.5.

• Moved the documentation build dependencies into a setup extra so building them without buildout becomes
easier.

• Added setup.py aliases for creating a testing sandbox and the documentation dependencies, and use them in the
buildout configuration.

• Extended fakeldap.RaisingFakeLDAPConnection to accept a list of exceptions to raise. On each call
to the method that is set to raise the exception, the first item in the exception list is removed and raised. This
allows testing code areas nested in more than one try/except clause.

1.4.5 1.3 (2012-03-23)

• Update bootstrap.py to what ships with zc.buildout 1.5.2

• fakeldap: Add email characters and some non-ASCII characters to FLTR_RE, to be able to use them in searches.
(Stefan Holek)

• fakeldap: Add unbind_s API. (Stefan Holek)

• fakeldap: Deep-copy entries before returning them. (Stefan Holek)

• fakeldap: Only return requested attributes. (Stefan Holek)

• fakeldap: Optionally disable password hashing. (Stefan Holek)

• fakeldap: Optionally maintain the ‘memberOf’ attribute of group members. (Stefan Holek)

• connection: Clean up encoding and decoding of values for when the api_encoding is set to None. (Stefan Holek)

• connection: New ‘raw’ kwarg for the search API. If true, search results are returned in the ldap_encoding.
(Stefan Holek)

8 Chapter 1. Narrative documentation

dataflake.ldapconnection Documentation, Release 2.1

• connection: Store a connection’s bind_dn and bind_pwd as is, and encode them before use. (Stefan Holek)

• connection: Fix a condition that caused rebinding to fail if only one of bind_dn and bind_pwd had changed.
(Stefan Holek)

• connection: Add disconnect API. (Stefan Holek)

• connection: Allow to delete subsets from multi-valued attributes. (Stefan Holek)

• switched documentation to point to the new Git repository

1.4.6 1.2 (2010-08-09)

• Using id() is not random enough for a unique hash.

1.4.7 1.1 (2010-05-09)

• Updated Sphinx Makefile and configuration to be closer to the latest Sphinx version

• Greatly expand installation and testing documentation using ideas from Tres Seaver

1.4.8 1.0 (2010-04-12)

• Bug: fakeldap.FakeLDAPConnection wildcard searches did not work correctly and returned too many matches.

• Bug: Improve behavior matching of standard python-ldap and fakeldap by raising ldap.NO_SUCH_OBJECT
where operations target non-existing entries.

• Bug: Improve behavior matching of standard python-ldap and fakeldap by raising ldap.ALREADY_EXISTS
where operations duplicate existing entries.

• Bug: Added tests for all fakeldap.FakeLDAPConnection methods and added tests for some other module classes
and functions.

• Refactoring: Removed the fakeldap.initialize and explode_dn functions. They were either not needed or need-
lessly duplicating existing python-ldap features.

• Bug: python-ldap will no longer support the LDAP connection class ldap.ldapobject.SmartLDAPObject with
version 2.3.11. Replacing it with ReconnectLDAPObject.

• Bug: If a connection raised an LDAP exception inside start_tls_s handling was broken.

• Feature: You can now add server definitions for servers that support the StartTLS extended operation. Whereas
the existing secure connections using the ldaps protocol are encrypted throughout, StartTLS is used through
an unencrypted connection to request all further traffic to be encrypted.

• Refactoring: Switch tests to using the fakeldap LDAP connection object wherever possible, and correct a few
fakeldap and LDAPConnection misbehaviors along the way.

1.4.9 1.0b1 (2010-02-01)

• Performing more rigorous input checking for DNs

• Made encoding/decoding more flexible by adding configuration flags for the encoding used by the LDAP server
and the encoding for calls to and return values from the connection API. The default is backwards compatible
(UTF-8 for the LDAP server encoding, and Latin-15 for the API encoding).

• Factored the connection tests module into a series of modules, it was getting large and unwieldy.

1.4. Change log 9

dataflake.ldapconnection Documentation, Release 2.1

• move the actual python-ldap connection from an attribute into a module-level cache since those connections
cannot be pickled.

• Removed the rdn_attr attribute, which was used to try and determine if a modify operation should trigger a
modrdn. We now fish the RDN attribute from the record’s DN for this purpose.

• Changed the way internal logging is done to avoid storing logger objects onto the connection instance unless it
is explicitly specified. This means the instance is picklable when using the default logging.

• Removed the bind method. There was no good reason to expose it as part of the public API, and since bind
operations are re-done as part of all operations it would only serve to confuse users. Users who want to use
credentials other than the credentials configured into the connection instance should pass them along explicitly
when invoking the operation.

• The search method now provides a default search subtree search scope if none is specified.

• Creating a new instance does not require passing server data like host, port and protocol anymore.

• replaced several methods with better alternatives from python-ldap, which also requires upping the dependency
to python-ldap>=2.3.0, and fixing up the tests.

• pare down fakeldap to not try and provide all kinds of constants from python-ldap, but just a LDAP connection
class.

• add a new method “bind” to rebind a connection, if the last bind differs from the desired bind.

• rename variable name “filter” with “fltr” to stop shadowing the Python function “filter”.

• added an interfaces file as documentation and “contract”. This adds a dependency on zope.interface.

• removed unused argument “login_attr” from constructor argument list

• LDAPConnection objects now accept more than a single server definition. Failover between connections is
triggered by connection or operation timeouts. Added API to add and remove server definitions at runtime.

• all those methods causing LDAP operations to be performed accept optional bind_dn and bind_pwd named
arguments to rebind with the provided credentials instead of those credentials stored in the LDAPConnection
instance. This represents an API change for the insert, modify and delete methods.

1.4.10 0.4 (2008-12-25)

• fakeldap bug: the modify_s method would expect changes of type MOD_DELETE to come with a list of specific
attribute values to delete. Now the attribute will be deleted as a whole if the expected list is None, this reflects
actual python-ldap behavior better.

• now we are exercising the fakeldap doctests from within this package, they used to be run from Prod-
ucts.LDAPUserFolder, which was not cleaned up when the fakeldap module moved to dataflake.ldapconnection.

1.4.11 0.3 (2008-08-30)

• fakeldap: no longer override the LDAP exceptions, just get them from python-ldap. (http://www.dataflake.org/
tracker/issue_00620)

1.4.12 0.2 (2008-08-27)

• backport a fix applied to the LDAPUserFolder FakeLDAP module to handle BASE-scoped searches on a DN.

10 Chapter 1. Narrative documentation

http://www.dataflake.org/tracker/issue_00620
http://www.dataflake.org/tracker/issue_00620

dataflake.ldapconnection Documentation, Release 2.1

1.4.13 0.1 (2008-06-11)

• Initial release.

1.4. Change log 11

dataflake.ldapconnection Documentation, Release 2.1

12 Chapter 1. Narrative documentation

CHAPTER 2

API documentation

API documentation for dataflake.ldapconnection.

2.1 Interfaces

Note: On ReadTheDocs this page will not work correctly.

2.2 dataflake.ldapconnection.connection

Note: On ReadTheDocs this page will not work correctly.

13

http://http://dataflakeldapconnection.readthedocs.io
http://http://dataflakeldapconnection.readthedocs.io

dataflake.ldapconnection Documentation, Release 2.1

14 Chapter 2. API documentation

CHAPTER 3

Support

If you need commercial support for this software package, please see https://www.zetwork.com.

15

https://www.zetwork.com/

dataflake.ldapconnection Documentation, Release 2.1

16 Chapter 3. Support

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

• glossary

17

dataflake.ldapconnection Documentation, Release 2.1

18 Chapter 4. Indices and tables

Python Module Index

d
dataflake.ldapconnection.connection, 13

19

dataflake.ldapconnection Documentation, Release 2.1

20 Python Module Index

Index

D
dataflake.ldapconnection.connection (module), 13

21

	Narrative documentation
	Installation
	Using dataflake.ldapconnection
	Development
	Change log

	API documentation
	Interfaces
	dataflake.ldapconnection.connection

	Support
	Indices and tables
	Python Module Index

